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Abstract—Cloud computing platforms are being increasingly
used for closing feedback control loops, especially when compu-
tationally expensive algorithms, such as model-predictive control,
are used to optimize performance. Outsourcing of control algo-
rithms entails an exchange of data between the control system
and the cloud, and, naturally, raises concerns about the privacy of
the control system’s data (e.g., state trajectory, control objective).
Moreover, any attempt at enforcing privacy needs to add minimal
computational overhead to avoid degrading control performance.
In this paper, we propose several transformation-based methods
for enforcing data privacy. We also quantify the amount of
provided privacy and discuss how much privacy is lost when
the adversary has access to side knowledge. We address three
different scenarios: a) the cloud has no knowledge about the
system being controlled; b) the cloud knows what sensors and
actuators the system employs but not the system dynamics; c)
the cloud knows the system dynamics, its sensors, and actuators.
In all of these three scenarios, the proposed methods allow
for the control over the cloud without compromising private
information (which information is considered private depends
on the considered scenario).

I. INTRODUCTION
A. Motivation

The recent advances in reliability and speed of communi-
cation have led to an increased use of cloud-based services,
which provide computation and data storage capabilities to
clients. Control over the cloud [1], [2], [3] has numerous
advantages, which include easier installation and maintenance
[4], and the availability of global information from all of the
cloud’s clients when making control decisions. However, the
main advantage of control over the cloud is that it allows
control systems to outsource expensive computational tasks to
the cloud, thus potentially improving the speed of computation
and freeing the local computational capabilities for other tasks.

An illustrative example of the benefits of outsourcing com-
puting can be observed in Model Predictive Control (MPC).
MPC is a conceptually simple, yet powerful scheme that
was adopted in industry for multivariable control [5]. MPC
inherently involves solving complex constrained optimization
problems on-line (i.e., within one sampling interval). The work
in [1] presents an experimental study that shows feasibility
of MPC over the cloud for robot control. Another work (see
[2]) considered the practicality and benefits of cloud-based
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MPC for a large-scale solar plant. The availability of global
information provided by control over the cloud can have many
practical benefits, as shown in [3]. There, the authors propose
a solution to the problem of traffic flow estimation via the
cloud.

However, relying on a third-party to perform computation is
not without its dangers. Despite the benefits of control over the
cloud, a number of studies have shown that exposing existing
systems to connectivity may lead to security vulnerabilities
in a vast variety of applications [6], [7], [8], [9], including
control of process plants, traffic infrastructure, and smart meter
systems. Cyber-security attacks vary based on the amount of
resources the attacker possesses [10]. One of the most basic
attacks that requires little resources is eavesdropping. It can
often serve as a stepping stone in the implementation of more
complex attacks [11]. In control over the cloud, eavesdropping
involves the adversary listening in to the communication chan-
nel between sensors, controllers, and actuators to leak valuable
information about the model, the controller, and trajectories
[12]. The client is expected to disclose all of this sensitive
information to the cloud if it intends to receive valid control
inputs from it. For example, we would expect drivers to share
their locations, final destinations and, perhaps, dynamics to
successfully allow traffic control over the cloud.

Eavesdropping attacks are usually prevented with encryption
- the plant and the cloud establish a shared key with which they
encrypt transmitted messages and decrypt the received ones.
However, if the adversary manages to undermine the security
of the cloud (e.g., gain unauthorized access to its memory),
this technique can no longer protect the system since the
cloud accesses the decrypted data. As stated in [13], traditional
IT security provides only a partial solution. Therefore, there
is a pressing need for development of control-over-the-cloud
methods that do not rely on decryption of the incoming data.
Although much effort has been directed to this problem, a
universally secure scheme for control over the cloud that could
support any client functionality has not yet been created [14],
[15]. When solving the problem of private control over the
cloud, two other important concerns need to be accounted
for: efficiency and safety. Privacy cannot come at the cost
of degradation of control performance either due to delays in
the feedback loop or inaccurate control inputs.

B. Related work

The body of work on privacy in control over the cloud
can be categorized into methods based on homomorphic
encryption, differential privacy, and algebraic transformations.

When using homomorphic encryption techniques, the cloud
is able to perform the computations on encrypted data without
the need to decrypt it [16]. Homomorphic encyption can be
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classified into fully homomorphic encryption (FHE), which
allows arbitrary computations on encypted data, and partially
homomorphic encryption (PHE), which only allows for a sub-
set of operations (e.g., modular multiplication) on encrypted
data. Using PHE for control over the cloud with encrypted
controllers was proposed in [17], [18]. In an effort to reduce
communication with the cloud, in [19] the authors suggest us-
ing FHE for controller encryption. However, longer execution
times of FHE [16] make it less practical than PHE when using
optimization for control over the cloud. While PHE methods
are shown to be feasible and are able to provide privacy
guarantees [4], [12], [15], [20], [21], [22], the execution
time, which grows disproportionally with an increase in key
length [12], [15], remains a valid concern in these methods. A
consequence of this is that using homomorphic encrypion may
potentially lead to instability in the controlled system due to
processing delays. To address this problem, some works (see
[12]) have shown that encryption parameters can be chosen to
ensure stability of the closed-loop performance, thus providing
a natural trade-off between security and control performance.
The practical feasibility of encrypted control systems has been
validated in [23] by considering control of a DC motor in real
time.

Inspired by studies in privacy of databases, the problem
of privacy in control over the cloud has also been approached
from the standpoint of differential privacy (see [24], [25]). This
technique ensures that the risk of losing privacy of a single
user's data by means of data queries is low. The main idea of
these methods is to perturb the response to a data query with
appropriate noise [26]. However, to achieve more privacy, the
user must sacrifice accuracy (i.e., add more noise), which, in
the context of control, degrades the control performance.

The ideas behind algebraic transformation methods have
initially stemed from works on privacy in optimization. The
idea is to use algebraic transformations to produce a different,
but equivalent optimization problem. In other words, although
the cloud does not know the original optimization problem, it
can provide the client with an optimal solution to an equivalent
optimization problem from which the client is able to recover
the optimal solution to the original problem. Although initially
these methods found application exclusively in linear programs
[27], [28], several efforts have been directed to providing
a unified framework and generalizing them to convex opti-
mization problems (see [29], [30]). The work in [29] also
shows one of the first attempls to define and quantify privacy
of transformation-based methods. Algebraic transformation
methods found applications in control due to their efficiency
and guaranteed optimality of the solution [30]. For example, in
[31] the authors propose a hybrid transformation-based method
to preserve privacy of an MPC controller in networked control
systems. In [32], transformation-based methods are used to
provide privacy in a specific problem AC Optimal Power Flow.

C. Contributions

This paper focuses on the use of transformation-based
methods to preserve privacy of the system dynamics, control
objective and constraints, and system trajectories. The contri-
butions of this paper are fourfold:

1) we propose using isomorphisms and symmetries of con-
trol systems as a source of transformations so as to keep
data private;

2) we quantify the privacy guaranteed by these methods via
the dimension of the set that describes the uncertainty
experienced by the adversary;

3) we quantify how much privacy is lost when the adversary
is assumed to have access to side knowledge;

4) we show that the proposed method is computationally
light as it only requires matrix multiplications.

The method proposed in this paper was initially introduced in
[33]. In [34], it was extended to networked control systems
with several agents requesting control input from a single
cloud. In [35], the dimension of the set describing the un-
certainty experienced by the adversary was proposed as a
measure of privacy for this method and was evaluated for
the special case of free group actions. This paper provides
a unified presentation of the results in [33], [35] with simpler
proofs and several new results, such as the bounds on privacy
when the group action is not free and an exact quantification
of privacy for prime systems.

While privacy quantification in optimization has been stud-
ied in [30], this work considers how much privacy is preserved
in the more challenging context of control. Moreover, the
measure of privacy proposed in this work has been chosen
to be suitable for problems of optimization in control systems
and, therefore, is different from any of those proposed in [30].
Although the application of transformation-based methods in
control has been previously discussed in [31], the scheme
proposed there only considers a special case, where the cloud
optimizes the weighted sum of the norms of the input and
state, and the state is taken to be the output of the system.
Our algorithm can be applied to a wider class of problems as
we allow for arbitrary quadratic costs, linear constraints and
outputs different from the state.

The proposed results do not address the case where the ad-
versary has some belief about the structure or the range of val-
ues of the system parameters. Addressing the adversary’s be-
liefs is likely to be more natural in a probabilistic/information-
theoretic setup that is outside of the scope of this paper, where
we only employ deterministic techniques.

II. PROBLEM DEFINITION
A. Plant dynamics and control objective

We consider discrete-time affine plants, denoted by 3, and
described by:

Tpi1 = ATy + Buy +¢
gk = Cax +d,
where A€ R, B ¢ Rv™m (O ¢ RP*", ¢ ¢ R", and
d € RP describe the dynamics of the system, and T € R”,
ur € R™ and g, € RP denote the state, input and output of
the system at time k, respectively. We assume that system X
is controllable and observable. We also assume, without loss
of generality, that ker B = {0} and Im C = RP?, since we

can always eliminate linearly dependent columns (resp. rows)
from B (resp. C).

Y. (IL1)
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To simplify notation, we lift every affine map Wx + v to a
linear map through the following construction:

Wz + v m/ ﬂ m . (IL.2)
Applying (IL.2) to (IL.1):
z A 7| [z B
s &[0 =[5 S 3]+ 0]
£ Az, + Buy, (I1.3)

(1>

Yk c d Tr| a
we[3]= [0 v [i]2em

In the remainder of the paper we suppress the inner structure
for simplicity and represent all the systems in the linear form
(I1.3). However, the reader is advised to remember that we are
dealing with affine maps. This is also true for the affine maps
we will use to define isomorphisms.

We refer to system (IL.3) as the triple ¥ = (A, B,C). We
call a triple {zg, ug, yx}ren a trajectory of X if it satisfies
(IL.1) for all k£ € N.

Additionally, we define a cost function
J:R" x (R™M)N+1 5 R for N € NU {+oco} that allows
to compare trajectories and, thus, to formulate different
control objectives. In alignment with the linear framework,
we consider quadratic cost functions given by:

N
J(x,u) :ZAn;-TMAni7

(IL4)
i=0
T
where An; = [z, — 2} w;—u}]", z = {x¢,...,zx} and
u = {ug,...,un}. The sequences z* = {z{,...,x5} and
u* = {ug,...,uly} denote the reference trajectories to be

tracked. We define M € R(»HmH1)x(ndm41) 14 e a positive-
definite matrix. Due to the lift (II.2), this cost includes not
only quadratic, but also linear terms.

In addition to a cost, we also consider control objectives that
require certain constraints to be satisfied at all times. These
constraints are defined as:

Dn; <0, Vie{0,1,..,N}, (IL5)

T
where n; = [z; wu;]  and D € RA*(ntm+1)  Note that,
despite appearing to be linear constraints, the constraints above
are in fact affine, in view of the construction (IL.2).

B. Attack model and privacy objectives

The cloud is treated as a curious but honest adversary: the
cloud adheres to the computations prescribed by an agreed-
upon protocol, but may seek to extract and leak confidential
information by keeping record of all computations and com-
municated messages.

The interaction between the plant and the cloud is performed
in two steps. During the first step, called the handshaking,
the plant provides the cloud with a suitably modified version
of the plant model, cost, and constraints. In exchange, the
cloud agrees to compute the input minimizing the provided
cost, subject to the constraints and plant dynamics. During

the second step, called plant execution, the plant repeatedly
sends a suitably modified version of its measurements to the
cloud. The cloud computes a new input based on the received
measurements and sends it to the plant, where it is suitably
modified before being applied to the plant.

In the previous paragraph we purposely used the vague
expression “suitably modified”. Making this expression more
concrete requires that we first define the knowledge available
to the plant. We consider the following three scenarios.

Problem I1.1 (Scenario 1). Assuming the cloud has no knowl-
edge about the plant:

1) how to modify the plant (A, B, C), cost J, and constraint
matrix D before sending them during the handshaking
step,

2) how to modify the measurements sent to the plant, and

3) how to modify the inputs received from the plant,

so that the plant’s trajectory minimizes cost J in (IL.4), while
preventing the cloud from learning the plant (A, B,C), the
cost J, the constraint matrix D, and the plant’s trajectory

{@, ks Yr ren?

Problem I1.2 (Scenario 2). Assuming the cloud has no knowl-
edge about the plant except for knowing what are its sensors
and actuators:

1) how to modify the plant (A, B, C), cost J, and constraint
matrix D before sending them during the handshaking
step;

2) how to modify the measurements sent to the plant, and

3) how to modify the inputs received from the plant,

so that the plant’s trajectory minimizes cost J in (11.4), while
preventing the cloud from learning the plant (A, B,C), the
cost J, the constraint matrix D, and the plant’s trajectory
{@r, ur, Yr fren?

Problem IL.3 (Scenario 3). Assuming the cloud has complete
knowledge about the plant dynamics, including its sensors and
actuators:

1) how to modify cost J, and constraint matrix D before
sending them alongside the plant (A, B,C) during the
handshaking step;

2) how to modify the measurements sent to the plant, and

3) how to modify the inputs received from the plant,

so that the plant’s trajectory minimizes cost J in (IL.4), while
preventing the cloud from learning the cost J, the constraint
matrix D, and the plant’s trajectory {xy, uk, Yk tren?

These problems are solved in Section IV by utilizing
isomorphisms and symmetries of control systems we define
next in Section III.

III. ISOMORPHISMS AND
SYMMETRIES OF CONTROL SYSTEMS

In this section, we introduce the notions of isomorphism
and symmetry of control systems along with several technical
results used in Section IV to provide a solution to the problems
described in Section II.
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Let us denote by S, ., the set of all controllable and
observable linear control systems with state, input and output
dimensions n, m, and p, respectively.

Definition IIL.1. An isomorphism of control systems in
Spom,p i1s a quadruple v = (P, F,G,S) consisting of a
change of state coordinates P : R” — R"™, state feedback
F : R® — R™, a change of coordinates in the input space
G : R™ — R™, and a change of coordinates in the output
space S : RP — RP. Transformations P and S are affine
invertible maps, F' is an affine map and G is a linear invertible
map.

Recall that, to simplify notation, we lift the affine maps to
linear maps using the transformation (I1.2).

Let us also denote the set of isomorphisms of S . p
described in Definition III.1 as G,, ,, ,. The set Gy, ,, , forms
a group under function composition as the group operation'.
This allows us to define a group action of G, ,, , on the set

of linear control systems Sy, p p.

Definition IIL2. Each element ¢ € Gy, ,,,, acts on X €
Sn.,m,p to produce 1, % given by:
.5 =(P,F,G,S).(A,B,C)
= (P(A-BG™'F)P~', PBG™',SCP™)
5 (A,B,C)L%,

(1L 1)

The map v, is called an isomorphism action. We also say that
systems X and X are equivalent.

An isomorphism maps the state xj, input ug, and output yy,
of system . to the state Zj, input uy, and output gy of system
> as follows:

T = Pxy, (I11.2)
uy = Fag + Guy, (I1.3)
Uk = SYk. (I11.4)

Similarly, an isomorphism induces transformation on the con-
trol objectives — i.e., the cost and constraints. The effect of
1) on 1 can be represented by:

~ jk _ P 0 T N L
Mk = ﬂ,k o F G Uk = k-
Therefore, the cost function J can be expressed as a function

of the sequence of modified states & = {Zg, ..., Zx} and the
sequence of modified inputs @ = {ug, ..., an} as follows:

(I1L.5)

N
J(&, @) =, (x,u) = > AR MAT;,
=0

(I11.6)

where M = L-TML~'. Applying the isomorphism action to
the constraints in (IL.5) yields:

Vi€ {0,1,..,N}, (I1L.7)

where D = P D = DL

YA composition of two isomorphisms is given by 2 o 1 =
(P2 P1,GoF1 + FoP1,G2G1, 5251), the identity is ¢ = (1,0,1,1) and
the inverse is given by ¢» 1 = (P 1,—-G 'FP,G ', S 1).

The effect of an isomorphism on the system, trajectory, cost
and constraints will be used in Section IV to prevent the cloud
from learning them.

For a given system 3, there is a special subgroup of G, ., p
called the symmetry group of X, which is defined by the
following property.

Definition IIL.3. Let ¥ € S, ,, . An isomorphism 1) €
Gn,m.p 1s said to be a symmetry of ¥ if ¢,X = 3. The
subgroup of symmetries of X is denoted here as /C,, 1, p(X).

The notion of isomorphism was crafted to preserve prop-
erties of control systems. Among these, trajectories have a
special significance. A simple induction argument can be used
to establish the following result.

Lemma IIl4. Let ¥ € S,pmyp and ¥ € Gump 1If
Y = .Y and {zp, uk, Yk tren is a trajectory of 3, then
{Zk, Uk, U bren, as given by (I1.2) - (II14), is a valid tra-
Jjectory of 3.

This means that if the cloud receives ¥ during the handshak-
ing step, then the received sequence of measurements y and
the produced sequence of control inputs @ in the subsequent
execution step are compatible with the plant 3. To elaborate,
both the modified measurements y and modified control inputs
u would be compatible with modified dynamics >

Let us now define S,,,,, to be a set of quadruples
Q2 {2 JD, {%k, Yk, U } bren Such that {zg, yg, ug} is a
trajectory of a linear system ¥ € S, ,n, minimizing cost
function J under constraints D.

Lemma IILS. The set S, is a smooth manifold.

Proof. We can see that Smm,p is, in fact, the Cartesian product
of S, m.p with the set of cost functions M+ (m+n+1,R),
defined by positive-definite matrices, with the set of constraints
Mg(h x (m +n + 1),R), defined by the set of full-rank
matrices, where d = min{h,m + n + 1}. It is known that
the product space is a smooth manifold if its constituents are
smooth manifolds [36, p. 21]. It remains to show that these
constinuents are indeed smooth manifolds.
Let us construct the map:

fS :Rnx(n+1) % RPX™M Rpx(n+1) N R2
(A,B,C) — (det C,det O),

where C and O are the controllability and observability
matrices of the dynamics (A4, B,C). It can be seen that
Snmp = [ (R?\(0,0)). The function fs is continuous since
each of its elements is defined by a polynomial function of the
elements of (A, B, C). Given that for continuous functions the
preimage of every open set is an open set, we have that Sy, y,
is an open subset of the domain of fg. Seeing that the domain
of fs is a smooth manifold, S, ,, , is a smooth manifold of
dimension n(n + 1) + nm + p(n + 1).

The set of positive-definite matrices M¥*+(m + n +
1,R) is shown to be a smooth embedded submanifold of
R(m4nt1)x(m+n+1) of dimension (m +n41)(m +n+2)/2
in [37].

The set of full-rank matrices My(h x (m+n+1),R) is a
smooth manifold of dimension h(m +n+ 1) [36, p. 19]. O

(IIL8)
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Similarly to Sy, .., We can define a group action of Gy, 1 pp
on S, m p in view of the previous discussion.

Therefore, we can use the isomorphism action of Gy, ,, , to
define an equivalence relation on S, p.

]~)eﬁniti~0n~ I!I.6. Let Q = (Z, J, D, {Ik, Uk, ykf}kEN) and
Q= (Z,J,D,{ik,ﬂk,gjk}ng) be elements of Sy, ,, . The
equivalence relation ~g on S, p, , denoted by:

Q~g Q, (II1.9)
is defined by the existence of ¢ € G,, ., ,, such that:
Q =, Q; (IIL.10)

ie, Y =v,%, J=1,J, D=1.D, and {Z, ir, Jx }ren is
given in terms of {xy, ug, Yk fren as in (II1.2) - (IIL4).

The equivalence relation ~g, in turn, defines equivalence
classes in Sy, 1, p. The equivalence class of Q2 € S, ,, ,, defined
by the action of G,, ., , is the set:

[Q] 2 {Q € 8mp|3 € Grmp such that ' = ¢, Q}
= {0 Q) € Grmp}- IL11)

This equivalence class is also called the orbit of 2 under action
of G-

To facilitate further results, let us show that G,, ,,, ,, is a Lie
group acting on Sy, . p-

Lemma IIL7. The group Gy m p is a Lie group of dimension
n(n+ 1) +m(n + 1) +m? + p(p + 1) acting smoothly on
Sn,m.p-

Proof. It was previously established that G, ,, , is a group.
It is a Lie group because it is a Cartesian product of smooth
manifolds (i.e., general linear groups and vector spaces of var-
ious dimensions) and its multiplication and inversion maps are
smooth. Moreover, since the dimension of a product of smooth
manifolds is equal to the sum of the factors’ dimensions, the
dimension of G, p is n(n+1)+m(n+1)+m? +p(p+1)
[36, p. 21]. The group G, p acts smoothly on Sn,myp since
its action involves matrix multiplication and matrix inversion:
the former results in every element of the product being a
polynomial function of the elements of the factors, while the
latter is smooth by Cramer’s rule [36]. ]

The next result shows that when the cloud optimizes .J
and the plant replaces each y;, with output g, the resulting
sequence of inputs % can be used to reconstruct a sequence
of inputs u that optimizes .J. Its proof amounts to using the
change of variables (II1.2)-(II1.4).

Lemma IIL8. Let Q € S, and 1 € Gy m - Suppose the
cloud solves the optimization problem:

J(#,1)

min
bt

subject to ﬁn} <0, Vie{0,.., N},

for the plant ¥ = 1,% and the sequence @* is a unique so-
lution of this optimization problem. Then, the unique solution
of the optimization problem:

J(x,u)

min
u

subject to Vi € {0,..., N}

for the plant Y is the sequence u* such that

uf = G=Y(a} — Fux;) for all i € {0,..., N}.
IV. SOLVING THE CONTROL-OVER-THE-CLOUD
PRIVACY PROBLEM

A. Enforcing privacy

The main reason for using isomorphisms is to preclude the
cloud from distinguishing between isomorphic systems. We
now formalize the notion of indistinguishability.

Definition IV.1. A protocol renders two quadruples {2 and
Q indistinguishable by the cloud if the exchanged messages,
when using the protocol between the cloud and the plant €2,
and the exchanged messages, when using the protocol between
the cloud and the plant Q, can be made the same.

The results from Section III allow us to construct a com-
munication protocol between the plant and the cloud that, as
will be further shown, solves Problems II.1-II.3. We start by
detailing this protocol.

Algorithm 1 Secure communication

Input: Plant: v, X, J, D, ug;
Cloud: §x, %, J, D
Output: Plant: il, j, l~), Uk
Cloud: 1y
Phase 1: Handshaking:

1: Plant: Encode ¥, J, D into Y = Py, J = 1. J and
-D =, D;

2: Plant: Send f], j, and D to the cloud;

Phase 2: Execution:

3: Plant: Encode measurement y into y; = Sy, and send
yr. to the cloud;

4: Cloud: Use the received yj to estimate Zj and compute
), minimizing J subject to the constraints D and the
dynamics X;

5: Cloud: Send %y to the plant;

6: Plant: Use the isomorphism ¢ to decode uj and produce
ug using (I11.3);

7: Plant: Apply uy, to the actuators.

From Lemma III.8, we see that Algorithm 1 provides the
plant with the inputs wuj that satisfy the original control
objective — i.e., the plant’s trajectory minimizes cost J under
affine constraints D.

Let us note how all the required computations in this
algorithm are matrix multiplications, which means that both
handshaking and execution can be performed in O(k?) time,
where k = max{n, m, p}. However, performing matrix multi-
plications of constant matrices (e.g., G~1F) in advance would
reduce the complexity of the execution to O(k?). Both of
these complexities were calculated only for the client side (i.e.,
Plant) of the algorithm.

Let us now show that applying this protocol indeed makes
any two systems in the same equivalence class indistinguish-
able from each other.

Theorem Iv.2.
phic systems

isomor-
and

Algorithm 1 renders
Q= (Ea Ja D7 {xka Uk, yk}keN)
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Q:(ij,f),{gﬁk,ﬁk,gjk}keN) indistinguishable by the

Proof. Since Q2 and Q are isomorphic, there exists an isomor-
phism % such that ¥, > = X, ¢, J = J, and VD = D.
Indistinguishibility of £ and Q will be shown by running two
instances of Algorithm 1: one with 2 and v as inputs, the other
- with Q and the identity isomorphism .. Let us denote the
communication algorithm described in Algorithm 1 applied to
Q € S,m,p with the selected isomorphism 1 € Gy, 1 by
Alg(€, ). During handshaking:

o when Alg(Q2,v) is executed, the plant sends ¥.%, 1.J,
and ¢, D

o when Alg(Q,v,.) is executed (1. is the identity of
Gn,m.p), the plant sends i, J , and matrix D unprotected.

Thus, the communicated dynamics and optimization problems
are the same. During execution:

o when Alg(Q,%)) is executed, 1) takes trajectories
{Th, ur, Yr f ey of X to trajectories {Zy, Uk, Ur }pey Of
>

o when Alg(Q,v.) is executed,
{i'ka U, gk}keN'

Therefore, the cloud receives the same measurements from
both plants. In response, since both plants communicated the
same optimization problem, the cloud sends the same control
inputs to both plant  and Q. O

the trajectories are

The result described in Theorem IV.2 states that the cloud
cannot differentiate between any two plants, costs, constraints
or trajectories contained in the same equivalence class of the
~g-equivalence relation, thereby protecting the privacy of the
system. In the next section, we quantify the amount of privacy
provided by Algorithm 1.

B. Quantifying privacy

Privacy is created by preventing the cloud from knowing
which quadruple (2 in its equivalence class [(?] it is interacting
with. Clearly, the larger the equivalence class, the more privacy
is ensured. Since each equivalence class has infinitely many
elements, cardinality cannot be used as a measure of privacy.
In this section, we show that each equivalence class is a
smooth manifold and we quantify privacy using the dimension
of this manifold.

1) Preliminaries: stabilizer subgroups and their dimen-
sions: The stabilizer subgroup of G, ,, , for any Q € S, s
denoted by IC,, 1, p(£2), is defined by:

K:n,m,p(Q) = {w € gn,m,p|w*Q = Q}

The subgroup /C,, , »(£2) must be a subset of the symmetry
subgroup /C,, n, p(X) since it must preserve the dynamics.

In [38], Respondek gives a characterization of the symme-
tries of controllable pairs (A, B). Since when considering pairs
(A, B) the output is not relevant, the isomorphisms of (A, B)
degenerate into the form ¢ = (P, F, (), where the matrices
P, F and G are defined to be the same as their counterparts in
Definition III.1. We denote the group of these isomorphisms
by G, m. The group action of G, ., is given by:

#+(A,B) = (P(A— BG~'F)P~', PBG™).

av.1)

(IV.2)

Let us define the symmetry subgroup of controllable systems
(A, B) as

]Cn,m(A’B) = {¢ € gnm|¢*(A’B) =

The next proposition uses the results from [39] and the
notion of controllability indices (see [40] for a definition) to
estimate the dimension of K, ,,,(4, B):

(A,B)}.  (IV.3)

Proposition IV.3. Let (A,B) be a controllable pair. Then:
m(n+1) —s <dim K, (4, B) <n(m+1) —

where:

m
s = E Ti—1Ti,
i=2

r1 =rank B,

r; =rank S;_1(A, B) —rank S;_2(A,B), i=2,...,m,
S;(A,B)=[B AB AB], j=1,..m—1
and {k;}", are controllability indices of (A, B).

Proof. The symmetry subgroup K, ,,,(A, B) consists of solu-
tions to the following system of equations:

A=PA-BG'F)P!
(Iv.a)
B = PBG™ 1,
which is equivalent to:
AP+ BF =PA
Iv.s)
BG = PB.

Recall that elements of the pair (A, B) and transformations
(P, F, Q) are, in fact, affine maps. If we express (IV.5) using
the inner structure of the maps, we get:
AP+ BF = PA
BG = PB
(A—Dp+ Bf = Pé—¢,

(IV.6)

p = o
0 1 and F' = [F ﬂ Finding elements of

Ky.m(A, B) is equivalent to finding (P, p, F', f, G). Accord-
ing to Theorem 2.2 in [39], the dimension of solution space .S
of (P, F, Q) satisfying the first and second equations in (IV.6)
is equal to:

where P = {P

dim S =m(n+ m)

E Ti—1Tq
E Ti—1T4

=m(n+m)—ror; —

=mn — E Ti—1Ti,
=2

because 19 = r1 = m, k1 = m and (A, B) is a controllable
pair. Fixing (P, F,G), one can find the dimension of the
solution space of the third equation in (IV.6). It can be
observed that the dimension of the solution space is equal
to dim ker [fl -1 B]. Since rank B = m, it follows that:

m <dimker[A—1 B]<n (IV.8)

IV.7)
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The result then follows from (IV.7) and (IV.8). O]

This result can be used to estimate the dimension of
Knmp(X). If 2 (A, B,C), then, from Proposition
IV.3, we know the dimension of KC,, ,,,(A, B) and that any
¢ € Knm(A,B) satisfies ¢.(A, B) (A, B). Given
¢ = (P,F,G) € Kym(A,B), finding a corresponding
v = (P,F,G,S) € Ky mp(X) requires finding S such that
C = SCP~!. Since we assume C' has linearly independent
rows, for a given P, this equation has at most one solution.
A solution exists if and only if Im C7 c Im P~7TCT
[41]. Let Q(A, B,C) be the subset of K, (A, B) defined
by the elements (P, F,G) for which a unique solution to
C = SCP~! exists. It can be seen that there is a one-to-one
correspondence between Q(A,B,C) and K, ,, »(X). Since
Q(A,B,C) C Ky, m(A, B), this gives an upper bound on the
dimension of the symmetry subgroup:

dim K, () < dim Ky (A, B).

Iv.9)

Lemma IV.4. Forany Q = (3, J, D, {xy, uk, Yr}pen) € Snm,

dim Ky, m p(Q2) < dim Ky, p(E) < dim Ky, (A, B),
where dim Ky, m (A, B) is given by Proposition IV.3.

Let us consider a special case, in which the dimension of
Kr,m.p(2) can be computed exactly.

Definition IV.5. A system ¥ € S,, ,,, , is said to be a prime
system if it is ~g-equivalent to the system of the form:

(4,1) _ , (4,2)
Tpy1 =T
D , . (IV.10)
SL‘(Z’K’ 7u(z)
k+1 Tk
g — 2D 1< <m,
where ), = ’121,1)’”"%21,&1),.“’ () e

R™ and {k;}™, are controllability indices of (4, B).

For prime systems we have the following characterization
of the dimension of /C,, , p(X).

Lemma IV.6. Let X € S, 1, , be a prime system. Then,

Zrm +m < dim Ky mp(E) < Zrm +n, (IV.11)
i=1 1=1
where
ry = rank B,
r; = rank S;_1(A, B) —rank S;_2(A,B), i =2,...
S;(A,B)=[B AB AIB], j=1,..m—1,

and {k;}, are controllability indices of (A, B).

7m7

Proof. Without loss of generality, let us consider a prime
system of the form (IV.10). From Proposition 2 in [38], we
can see that if a system is prime, a symmetry ¢ = (P, F, G, S)
is uniquely defined by a transformation on its outputs (i.e., by
transformation S).

We want to show that, in order to define a symmetry,
transformation S needs to be constructed in such a way that

each transformed output g,fj) is an affine function of outputs
y](f) with relative degrees greater or equal than that of y](:). To
simplify notation, we prove this claim for the example with
controllability indices k1 = ko = 2, k3 = 1, although the
employed arguments apply to any prime system:

(1,1 1,2 3,1) 3
) xl(c ) xl(~c+1 W

(2,1) _ _(2,2)
L1 = T

L1 = = Uy
2 = o) 2% = o (IV.12)
1 1,1 2 2,1 3 3,1
yB = 2 Y@ = 22 Y@ = 23D,

We will show, by contradiction, that if S produces a trans-
formed output based on outputs of a smaller relative degree,
then S cannot be part of a symmetry. In other words, there
exist no matrices P, F, and G such that the quadruple
(P, F,G,S) satisfies the equations:

A=PA-BG'F)P! (IV.13)
B = PBG™! (IV.14)
C=scp (IV.15)

Assume that (IV.13)-(IV.15) are satisfied and that S contains
non-zero elements .S;; if x; > x; (i.e., the transformed output
uses outputs of a smaller relative degree). From (IV.15), we
have that:

SCAYB = CPA'B, Y0<q< k. (1V.16)

By using (IV.13) and (IV.14), the following relation can be
shown:

PA= AP+ PBG™'F = AP + BF.
Recursively substituting (IV.17) into (IV.16) results in:
SCAYB = C(PA)A"'B = C(AP + BF)A"'B
=CBFA"'B+CAPA"'B
CBFAT'B+ CA(PA)AT™B

Iv.17)

§ CA'BFA™'"'B+CA'PB.
Equation (IV.l4)li:If1plies that PB = BG and, thus, leads to:
SCA'B = § CA'BFA"™'"'B + CA'BG.
1=0
Note that CA'B is a diagonal matrix such that:

{

In other words, this diagonal matrix marks the indices corre-
sponding to the outputs of equal relative degree. In addition,
the expression FA9~'"1B is an m x m matrix composed out
of elements of F' (recall that A and B are in the form (IV.10)).

The left-hand side of (IV.18) selects the columns of S
corresponding to the outputs of relative degree x; = ¢ + 1.
For the example in (IV.12), taking ¢ = 0 gives:

(IV.18)

1, ifk;=1+1
0, otherwise.

[CA'B);; = (IV.19)

0 0 Sis
SCB= 1[0 0 8o Iv.20)
0 0 Ss3
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The right-hand side of (IV.18) fills the rows correspond-
ing to the outputs of relative degree smaller or equal than
ki = q + 1 with values from G. In case of example in (IV.12),
the right-hand side, given ¢ = 0, is:

0 0 O
CBG=1|0 0 0 av.zn
X X X

Thus, the equality in (IV.18), which was derived using
the definition of symmetry, forces S;; to zero if k; > kKj.
In the example in (IV.12), this leads to Si3 = S35 = 0.
This contradicts the assumption that S’ produces a transformed
output based on outputs of a smaller relative degree.

This idea can be generalized to any prime system and,
therefore, each transformed output g]lil) can only be an affine
function of outputs y(] ) with relative degrees greater or equal

than that of y(z).

The number of outputs Yr

(i.e., greater or equal than k;) is
equal to 7, [39]. Therefore, each modified output y() is
an affine function with r, arguments. The constant terms

of transformations P, F, and S, denoted by p, f, and 5,
respectively, need to satisfy the following equalities:

(A-Dp+Bf=Pec—¢
5= é +d - Sd,

) with a relative degree greater

or equal to that of yk

PRSP flads = |00
Similarly to the proof of Proposition IV.3, the dimension of
the solution space of this system is given by the dimension of
the kernel of the linear map defining the left-hand side of the
system of equations as:

where P =

. A-I B 0
m < dim ker [ 0 0 I] <n, Iv.22)
thereby leading to the result of this lemma.
O

2) Main results: Consider the scenario from Problem II.1,
in which the cloud does not know anything about the system.
In this scenario, the plant encodes €2 using an isomorphism
v = (P, F,G,S) that can be regarded as a private key used to
encode and decode the information exchanged with the cloud.
This isomorphism 1 is chosen from G,, 1 p, the group of all
isomorphisms.

Proposition IV.7. Let ) € Sn7m7p. Then, under the scenario
described in Problem II.1, the cloud cannot distinguish be-
tween ) and any other system in the uncertainty set [Q]g (i.e.,
the equivalence class of Q) defined by the action of Gy, m p) of
dimension.

dim G p — dim Ky (92), (IV.23)

if Algorithm 1 is used.
This implies that the dimension of [Q|g is greater or equal
than:

n’+m(m+1)+pp+1)+> riar,
=2

(IV.24)

where r; is given in Lemma IV.3.

For Q) € S, p such that its corresponding ¥ € Sy, p Is
prime, this implies that the dimension of [Q|g is greater or
equal to:

E r'izv

n?+mn+1)+m?>+plp+1) — (IV.25)

where T, is given in Lemma IV.6.

Proof. From Theorem IV.2, we know that Algorithm 1 renders
isomorphic systems indistinguishable by the cloud. Therefore,
the uncertainty set is the set of systems isomorphic to [Q]g -
namely, the equivalence class of {2 defined by the action of
gn,m,zr

Let us define a map:

HQ : gn,m,p — Sn,m,p

Y = .0

Here, 6, is smootll because, as shown in Lemma II1.7, G, 1,
acts smoothly on Sy, 1, . The stabilizer set can be defined by:

Konmp(Q) = (92)7H(Q) = {¢|v.2 = Q}.

Since 0q, and its inverse are smooth and, therefore, continuous,
the subgroup KC,, ., »(€2) is closed.

By Theorem 21.17 in [36], the quotient space
Gnmp/Knmp() is a smooth manifold of dimension
dim Gy, 1 p — dim Ky, 1, p(2) such that the quotient map
T Grmp = Grom,p/Kn,m,p(£2) is a smooth submersion.

Now, let us define a map:

Oq : gn,?’mp/lcnﬂﬂ,}?(g) - Snm%l?
Y m p () = 1.0

where YK, . »(2) is a left coset of Ky, »(€2). It can be
shown that O, is well-defined.

By Theorem 4.29 in [36], Oq is smooth because 6o =
Oq o 7 is smooth and 7 is a smooth submersion.

It can be shown that the map O is equivariant (see [36, p.
164]) and, therefore, by the equivariant rank theorem [36, p.
165], we have that ©¢ has a constant rank.

Let us show that Oq is injective. If Oq (Y1 /Ky m p()) =
Oa(V2llnm p()), then (¢1).Q = (¢2).Q. This implies
that (¢1) "o € Kymp(Q) and, therefore, 11Ky, 1 () =
Y2lCh m p (). Therefore, Og is a smooth immersion.

By Proposition 5.18 in [36], the image of Og (i.e., the
equivalence class [(]g) is an immersed submanifold such that
Oa : Gnmp/Knmp(Q) = [Qg is a diffeomorphism and,
therefore, the dimension of [Q]g is equal to the dimension of
gn,m,p/lcn,m,p(Q)~

A more concrete quantification of privacy can be given for
various special cases. Using the results of Proposition IV.3 and
Lemma IV.4, we have that, for any 2 € S,, ,,,. ,,, the uncertainty
sets under the scenario described in Problem II.1 are smooth
manifolds of dimension greater or equal to the value in (IV.24)

The dimension of the uncertainty sets for prime systems can
be shown to be greater or equal to the value in (IV.25) using
Lemma IV.6. O
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We can determine the knowledge the cloud can extract
about the plant by considering what properties remain invariant
under isomorphisms. Since controllability, observability, and
the relative degree remain invariant, the cloud will not learn
anything else beyond knowing that the plant is controllable,
observable, and has a certain relative degree.

Example IV.8. To illustrate how different the systems pro-
duced by the proposed encoding scheme can be, consider a
system with the following dynamics:

01 0 00
AOOO,BlO,CBgﬂ.
000 0 1

We arbitrarily choose two sets of isomorphisms 1,12 €
Gn,m,p such that the elements of their constituent matrices
are between 0 and 1 (i.e., we pick isomorphisms from a
bounded set of G, 1, ). We will not be explicitly writing these
isomorphisms here due to space limitations. Applying these
isomorphisms to the system above, we arrive at completely
different systems f)l =1,2 and f)g = 1o, 2

o [35 94 —40 ~ [-406 535 148
Aj={-3 01 29|, Ay=|487 -40 -233|,
(28 83 -33 | 0.68 240 —0.88
- [16 77 ~ Jo16 095
Bi=|-22 15|, By = |1.03 —1.27],
| 13 —6.1 10.70 —0.31
oo [24 002 —18) - [-0.33 -168 156
"T1s 001 -1 Y27 339 —458 —0.97)°

Proposition IV.7 can be used to quantify privacy of other

scenarios presented in Section II.

Consider the scenario in Problem I1.2, where the cloud does
not know the dynamics but knows which sensors and actuators
will be used. An arbitrary isomorphism can no longer be
used for encoding since it could lead to inputs and outputs
that are inconsistent with existing sensors and actuators. This
inconsistency would signal the cloud that the plant is being
dishonest about its measurements and provide the cloud with
an opportunity to exploit this fact to gather additional knowl-
edge. Therefore, we need to restrict the group of isomorphisms
used for encoding. These isomorphisms are given by any
composition of ¢; = (P,0,1,I) for any P € GL(n,R) and
Y2 € Kp m p(X). It can be shown that this set of isomorphisms
forms a subgroup that we denote by H,.m »(2) C Grmp-

Corollary IV.9. Let Q € S, . - Then, under the scenario de-
scribed in Problem I1.2, the cloud cannot distinguish between
Q and any other system in the uncertainty set [Q]y (i.e., the
equivalence class of S defined by the action of Hpmp) of
dimension:

dim Hp, m p(2) — dim Ky, p(€2), Iv.26)

if Algorithm 1 is used. This implies that the dimension of [Q]3
is greater or equal to n(n + 1).

Proof. From Theorem IV.2, we know that Algorithm 1 renders
isomorphic systems indistinguishable by the cloud. However,
the uncertainty set is no longer the equivalence class under

the entire group of isomorphisms G,, ,,, ,, but the equivalence
class under a smaller group H,, ., ,(2) denoted by [2]4.

It can be shown that H,, ., ,(X) is a Lie subgroup of Gy, 1, p.
This subgroup #, mp(X) can be thought of as a product
manifold of C,, ,,, ,(¥) and a space of invertible affine maps.
Since the dimension of a product manifold is a sum of its
factors’ dimensions, we have:

dim o m,p(E) = dim Ky 1y (X)) + n(n + 1).

The result follows by applying Proposition IV.7 to H,, m, ,(2).
Using the result from Lemma IV.4, we can see that the
dimension of the uncertainty set for any 2 € Smm_,p is greater
or equal to n(n + 1). O

Since in this scenario the plant can no longer change the
input, the cloud will learn the transfer function, but not the
particular realization of the plant. The cloud would still be
unable to learn the trajectory of the state.

Finally, in the scenario described in Problem II.3, where the
cloud possesses the complete knowledge of dynamics, only the
isomorphisms from the symmetry subgroup ¢ € Ky, 1, ()
can be used. To provide privacy guarantees for this scenario,
let us assume that we have n + 1 linearly independent con-
straints on the state xj expressed by the constraint matrix D.
This is a reasonable assumption because systems often have
an operational envelope bounding the states. Therefore, any
P € Kpm,p(£2) must satisfy:

DL '=D«= DL=D
@{Dn oHP O]Z[Dn 0}
D21 D22 F G D21 D22
— D1 P = Dy;.

Given that Dy; € RM*(+1) g injective, the last equality
is satisfied if and only if P = I. Since P uniquely defines
F, G and S, we also have that the only isomorphism that
keeps (A, B,C,Dy1) invariant is ¢ = v, = (I,0,1,1) .
Therefore, the only element of C,, ., () i8 ¢ = (1,0,1,1)
and dim C,, ,, ,»(€2) = 0.

Corollary IV.10. Let Q € S, Then, under the scenario
described in Problem 1.3, the cloud cannot distinguish be-
tween Q and any other system in the uncertainty set Q] (i.e.,
the equivalence class of Q2 defined by the action of Ky, m p(X))
of dimension:

dim Ky, p(2) — dim Ky, m p(€2), av.27)

if Algorithm 1 is used.

When the constraint matrix D contains n + 1 linearly
independent constraints on the state, the dimension of the
uncertainty set is equal to dim K, m »(X), which is less or
equal to:

nim+1) — Zri,lri,
i=2

where r; is given in Lemma 1V.3.
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Moreover, for any Q) € Sn,m,p such that its corresponding
Y € Sy,m,p is prime, the dimension of [ is greater or equal

to
m

Zrki +m

i=1

Proof. The proof of this statement is similar to that of Corol-
lary IV.9. The dimensions of equivalence classes for prime and
general systems were evaluated using results of Proposition
IV.3 and Lemma IV.6. O

In this scenario, by applying Algorithm 1, the plant would
be able to conceal the state trajectory from the cloud.

To illustrate the main results of this section, consider the
following example.

Example IV.11. Consider a drone with linearized dynamics
given in [42] and a bounded operational envelope (i.e., con-
straints on the extreme values of its state). From the linear
model in [42] we observe that n = 12, m = 4, p = 4 and
rn =4, ro = 4, r3 = 2, 1y, = 2. Suppose we decide to
offload the control of this drone to the cloud. Let us evaluate
the privacy guarantees Algorithm 1 can provide in each of the
scenarios described in Section II.

In the first scenario, when the cloud has no prior knowledge
about the drone, we can choose any ¥ € G, ,, ». Therefore,
using Propositon IV.7, we estimate the dimension of the
uncertainty set to be greater than 212.

In the second scenario, when the cloud knows what sensors
and actuators the drone has, we must choose an isomorphism
1 € Hpm,p(X) to keep inputs and outputs consistent. A
practical example of this could be if the cloud was owned by
a company that provides computations specifically for drones.
In this case, we use Corollary IV.9 and estimate the dimension
of the uncertainty set to be greater than 156.

Finally, when the cloud has complete knowledge about the
plant, we are forced to choose a symmetry ¢ € K, m p(X)
to keep the dynamics unchanged. This scenario could, for
example, occur if the cloud belongs to the drone’s manufac-
turer. Using Corollary IV.10, we estimate the dimension of the
uncertainty set to be less or equal than 32. Unfortunately, we
generally cannot provide a guarantee for the lower bound in
this scenario. The dimension of the uncertainty set, however,
can be found exactly by determining K, ., (%) for a given
3.

V. SIDE KNOWLEDGE

The privacy guarantees derived in Section IV are com-
promised when the adversary has partial information about
the encoding isomorphism. In our problem formulation, we
assume that the cloud may have learned those through some
external channels or through some prior knowledge about the
system.

Recall that by Lemma IIL.7, G, ,,, is a Lie group of
dimension n(n + 1) + m(n + 1) + m? + p(p + 1). In this
section, we assume that the constraint matrix D has n + 1
linearly independent constraints on the state and, therefore, as

shown in the previous section, Cy, 1, (2) = {t0e}, Where 1),
is the identity element of G,, 1, p.

Suppose the cloud has partial knowledge about the encod-
ing isomorphism. We shall represent the partial knowledge
available to the cloud as a projection from G, ,, , onto a k-
dimensional vector space. Let us define p : G, 1., — R” to be
a surjective map of constant rank &, providing side knowledge
about the encoding isomorphism. Then, we can say that the
cloud knows some vector | € R¥, where:

l=p(P,F,G,S). (V.1)
Note that this map is not known to us, and the results that
follow do not require the knowledge of this map.

Side knowledge does not change the result of Theorem
IV.2, however the privacy guaranteed by the scheme changes.
It is obvious that the size of the uncertainty set defined by
isomorphisms that satisfy (V.1) is no greater and, in general,
smaller than if no side knowledge is available. Moreover, the
uncertainty set is no longer neither an orbit nor an equivalence
class because the preimage of p does not necessarily have a
group structure.

Let us show that the object defined by (V.1) on G,, . ,, is
still a manifold.

Lemma V.1. Let G, ,,, be the group of all isomorphisms,
P Gump — RF be a surjective map of constant rank k
and assume the cloud knows that | = p(P, F,G,S). Then,
p~ (1), representing the possible encoding isomorphisms used
by the client, is a properly embedded submanifold of Gy, y p.
Its dimension is dim Gy, p — k.

Proof. By the global rank theorem [36, p. 83], since p is a
surjective map of constant rank k, it is a smooth submersion.
From the submersion level set theorem [36, p. 105], since
both G, ;m, and R¥ are smooth manifolds and p is a smooth
submersion, we have that p~1(l) is a properly embedded
submanifold of dimension dim G,, ,, , — dim RF = n(n +
D +mn+1)+m?>+plp+1)—k O

Let us now consider the map ©g defined earlier in
Proposition IV.7. Since Ky p(€2) = 1., we have that
Grom,p/Kn,m,p(2) is equivalent to G,, ,, ,. Therefore, the map
Oq is equivalent to the orbit map 6. It was shown in Proposi-
tion IV.7 that Oq, is injective. The image of Oq(p~*(l)) con-
stitutes the uncertainty set, between the elements of which the
cloud is not be able to distinguish. Therefore, the main result
of this section requires finding the dimension of ©q (p~1(1)).

Proposition V.2. Assume ) € S,, ., is such that the con-
straint matrix D has n+1 linearly independent constraints on
the state. Suppose that Algorithm 1 is used and the cloud has
the following side knowledge about the selected isomorphism

V:
p(P.F,G,5) =1 € R,

where p : Gy p — R¥ is a surjective map of constant rank
k. Then, under the scenario described in Problem II.1, the
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cloud cannot distinguish between Q) and any other system in
the uncertainty set U = Oq(p~1(1)) of dimension:

dim Gomp—k=nn+1)+mn+1)+m?*+pp+1)—k.

(V.2)

Proof. By Theorem IV.2, Algorithm 1 renders isomorphic
systems indistinguishable by the cloud. However, the cloud
knows that we use an isomorphism ¢/ € p’l(l) and, therefore,
the uncertainty set is no longer the equivalence class under the
entire group of isomorphisms G, ., p, but the subset of this
equivalence class U = Oq(p~1(1)).

By the property of the orbit map [36, p. 166], for each 2,
the orbit map Og is smooth and has constant rank. Since O,
is also injective, we have, by the Global Rank Theorem, that it
is a smooth immersion [36, p. 83]. As it was shown in Lemma
V.1, the set p~1(I) is an embedded submanifold of Gr,mp and,
therefore, the inclusion map i : p~1(I) = Gy mp is @ smooth
embedding.

The map ©g o i is a smooth immersion because it is a
composition of smooth immersions. Since images of smooth
immersions are smooth immersed submanifolds (by Proposi-
tion 5.18 from [36]), the uncertainty set i = Oq(p~ (1)) is
a smooth immersed submanifold of Sn,m,p diffeomorphic to
p’l(l) and, hence, has the same dimension (refer to Lemma
V..

Using Lemma II1.7, the dimension of the uncertainty set is
evaluated to be:

nn+1)+mn+1)+m?+pp+1) — k.
O

Remark: although Proposition V.2 was proved under the
assumption that D has n + 1 linearly independent constraints
on the state, this assumption can be dropped if we assume the
intersection of p~!(l) and the left cosets of K, ,(2) in G
is well-behaved.

This result shows that the proposed scheme degrades grace-
fully with side knowledge — i.e., side knowledge allows the
cloud to reduce the dimension of the uncertainty set only by
the amount of side knowledge and not more. Moreover, this
result can be generalized for other scenarios considered in
Section IV-B2 using similar proofs.

Corollary V.3. Assume <) € Sn,m,p is such that the constraint
matrix D has n + 1 linearly independent constraints on the
state. Suppose that Algorithm 1 is used and the cloud has
the following side knowledge | € R* about the selected
isomorphism :

l=p(PF,G,S),

where p : Gpomp — R¥ is a surjective map of constant rank
k. Then, under the scenario described in Problem II.2, the
cloud cannot distinguish between Q) and any other system in
the uncertainty set U = Oq(p~1(1)) of dimension:

dim Hp,m p(3) — k. (V.3)

Under the scenario described in Problem 1.3, the dimension
of the uncertainty set is:

dim Ky p(3) — k. (V.4)

VI. CONCLUSION

In this paper, we proposed a transformation-based method
to preserve privacy in control over the cloud. In addition to its
low computational overhead, we have formally shown that this
method precludes the adversary from inferring the private data
by eavesdopping on the messages exchanged between the plant
and the cloud. We quantified the guaranteed privacy via the
dimension of the set that describes the uncertainty experienced
by the adversary. The problem of computing the dimension
of the stabilizer set /C,, ,, ,(€2) remains open, and its solution
requires a detailed analysis of system-theoretic properties. The
authors are currently investigating other measures of privacy
that may lead to a deeper insight into the proposed method. As
part of the future work, we aim to perform a feasibility study
of this encryption scheme by implementing it on a physical
testbed.
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